文/诸葛io CEO 孔淼
在《一看就明白的爬虫入门讲解:基础理论篇(上篇)》分享了爬虫入门中的"我们的目的是什么"、"内容从何而来"、"了解网络请求"这三部分的内容,这一篇我继续分享以下内容:
一些常见的限制方式尝试解决问题的思路效率问题的取舍
一、一些常见的限制方式
上述都是讲的都是一些的基础的知识,现在我就列一些比较常见的限制方式,如何突破这些限制这些抓取数据:
Basic Auth
一般会有用户授权的限制,会在headers的Autheration字段里要求加入;
Referer
通常是在访问链接时,必须要带上Referer字段,服务器会进行验证,例如抓取京东的评论;
User-Agent
会要求真是的设备,如果不加会用编程语言包里自有User-Agent,可以被辨别出来;
Cookie
一般在用户登录或者某些操作后,服务端会在返回包中包含Cookie信息要求浏览器设置Cookie,没有Cookie会很容易被辨别出来是伪造请求;
也有本地通过JS,根据服务端返回的某个信息进行处理生成的加密信息,设置在Cookie里面;
Gzip
请求headers里面带了gzip,返回有时候会是gzip压缩,需要解压;
Java加密操作
一般都是在请求的数据包内容里面会包含一些被java进行加密限制的信息,例如新浪微博会进行SHA1和RSA加密,之前是两次SHA1加密,然后发送的密码和用户名都会被加密;
其他字段
因为http的headers可以自定义地段,所以第三方可能会加入了一些自定义的字段名称或者字段值,这也是需要注意的。
真实的请求过程中,其实不止上面某一种限制,可能是几种限制组合在一次,比如如果是类似RSA加密的话,可能先请求服务器得到Cookie,然后再带着Cookie去请求服务器拿到公钥,然后再用js进行加密,再发送数据到服务器。所以弄清楚这其中的原理,并且耐心分析很重要。
二、尝试解决问题的思路
首先大的地方,加入我们想抓取某个数据源,我们要知道大概有哪些路径可以获取到数据源,基本上无外乎三种:
PC端网站;
针对移动设备响应式设计的网站(也就是很多人说的H5, 虽然不一定是H5);
移动App;
原则是能抓移动App的,最好抓移动App,如果有针对移动设备优化的网站,就抓针对移动设备优化的网站,最后考虑PC网站。
因为移动App基本都是API很简单,而移动设备访问优化的网站一般来讲都是结构简单清晰的HTML,而PC网站自然是最复杂的了;
针对PC端网站和移动网站的做法一样,分析思路可以一起讲,移动App单独分析。
1.网站类型的分析首先是网站类的,使用的工具就是Chrome,建议用Chrome的隐身模式,分析时不用频繁清楚cookie,直接关闭窗口就可以了。
具体操作步骤如下:
输入网址后,先不要回车确认,右键选择审查元素,然后点击网络,记得要勾上preserve log选项,因为如果出现上面提到过的重定向跳转,之前的请求全部都会被清掉,影响分析,尤其是重定向时还加上了Cookie;
接下来观察网络请求列表,资源文件,例如css,图片基本都可以忽略,第一个请求肯定就是该链接的内容本身,所以查看源码,确认页面上需要抓取的内容是不是 在HTML标签里面,很简单的方法,找到自己要找的内容,看到父节点,然后再看源代码里面该父节点里面有没有内容,如果没有,那么一定是异步请求,如果是 非异步请求,直接抓该链接就可以了。
分析异步请求,按照网络列表,略过资源文件,然后点击各个请求,观察是否在返回时包含想要的内容,有几个方法:
内容比较有特点,例如人的属性信息,物品的价格,或者微博列表等内容,直接观察可以判断是不是该异步请求;
知道异步加载的内容节点或者父节点的class或者id的名称,找到js代码,阅读代码得到异步请求;
确认异步请求之后,就是要分析异步请求了,简单的,直接请求异步请求,能得到数据,但是有时候异步请求会有限制,所以现在分析限制从何而来。
针对分析对请求的限制,思路是逆序方法:
先 找到最后一个得到内容的请求,然后观察headers,先看post数据或者url的某个参数是不是都是已知数据,或者有意义数据,如果发现不确定的先带 上,只是更改某个关键字段,例如page,count看结果是不是会正常,如果不正常,比如多了个token,或者某个字段明显被加密,例如用户名密码, 那么接下来就要看JS的代码,看到底是哪个函数进行了加密,一般会是原生js代码加密,那么看到代码,直接加密就行,如果是类似RSA加密,那么就要看公 钥是从何而来,如果是请求得到的,那么就要往上分析请求,另外如果是发现请求headers里面有陌生字段,或者有Cookie也要往上看请 求,Cookie在哪一步设置的;
接下来找到刚刚那个请求未知来源的信息,例如Cookie或者某个加密需要的公钥等等,看看上面某个请求是不是已经包含,依次类推。
2.App的分析
然后是App类的,使用的工具是Charles,手机和电脑在一个局域网内,先用Charles配置好端口,然后手机设置代理,ip为电脑的ip,端口为设置的端口,然后如果手机上请求网络内容时,Charles会显示相应地请求,那么就ok了,分析的大体逻辑基本一致,限制会相对少很多,但是也有几种情况需要注意:
加密,App有时候也有一些加密的字段,这个时候,一般来讲都会进行反编译进行分析,找到对应的代码片段,逆推出加密方法;
gzip压缩或者编码,编码的辨别度较高,有时候数据被gzip压缩了,不过Charles都是有自动解密的;
https证书,有的https请求会验证证书,Charles提供了证书,可以在官网找到,手机访问,然后信任添加就可以。
三、效率问题的取舍
一般来讲在抓取大量数据,例如全网抓取京东的评论,微博所有人的信息,微博信息,关注关系等等,这种上十亿到百亿次设置千亿次的请求必须考虑效率,否者一天只有86400秒,那么一秒钟要抓100次,一天也才864w次请求,也需要100多天才能到达十亿级别的请求量。
涉及到大规模的抓取,一定要有良好的爬虫设计,一般很多开源的爬虫框架也都是有限制的,因为中间涉及到很多其他的问题,例如数据结构,重复抓取过滤的问题, 当然最重要的是要把带宽利用满,所以分布式抓取很重要,接下来我会有一篇专门讲分布式的爬虫设计,分布式最重要的就是中间消息通信,如果想要抓的越多越 快,那么对中间的消息系统的吞吐量要求也越高。
但是对于一些不太大规模的抓取就没要用分布式的一套,比较消耗时间,基本只要保证单机器的带宽能够利用满就没问题,所以做好并发就可以,另外对于数据结构也 要有一定的控制,很多人写程序,内存越写越大,抓取越来越慢,可能存在的原因就包括,一个是用了内存存一些数据没有进行释放,第二个可能有一些hashset的判断,最后判断的效率越来越低,比如用bloomfilter替换就会优化很多。
注:相关网站建设技巧阅读请移步到建站教程频道。